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Variable-Density Turbulent Shear Layer 
n  Mixing layer between two parallel streams of fluids with different 

velocities and densities; instability leads to turbulence 

n  Distinctive structures have long been observed to occur  
(Kelvin-Helmholtz instability) 

n  Shear is one of the principal mechanisms for generating 
turbulence; buoyancy has been extensively studied at LANL 
while shear has received much less attention 

UCAR, Benjamin Foster  
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Variable-Density Turbulent Shear Layer 
n  Applications include: 
                 Astrophysics             Wind-wave Interaction     
 
 
 
 
 
 
 
 

  
 

 Pollutant Dispersion       Combustion 
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Scramjet, Stanford CTR (PSAAP project) 

NASA: “Surfer” 
waves on Sun 
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Variable-Density Turbulent Shear Layer 

n  Open questions: 
•  How do variable-density effects affect mixing? 
•  How do variable-density effects affect entrainment? 
•  No studies focusing explicitly on variable-density effects (most 

studies consider high-speed flows; very difficult to separate effects 
of compressibility from effects of variable density) 
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Prototypical Flow 

n  Simulation of many practical flows require turbulence 
models that include variable density effects  
•  Direct simulation not feasible for these cases à RANS 
•  Most models do not account for variable density effects 
•  BHR model developed at LANL 
•  Models require testing and coefficients determined from DNS/experiment 

n  Temporal mixing layer allows us to examine salient 
physics 
•  Simulated in periodic box (does not develop spatially) 
•  DNS gives us control over initial conditions (disturbance); difficult with experiments 
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Prototypical Flow: Problem Description 

 

n  Momentum-thickness Reynolds number Reθ=(θ)(ΔU)/ν 

n  Atwood number A=(ρ2-ρ1)/(ρ2+ρ1) 

n  Constant viscosity (ν=µ/ρ) 
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ΔU/2 

-ΔU/2 
ρ1=ρ0(1-A) 

ρ2=ρ0(1+A) 

θ 
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Variable-density turbulence 

n  Mixing between fluids with very different densities: variable-density mixing. 
n  The equations describing the variable-density mixing between two 

incompressible fluids can be derived from the compressible Navier-Stokes 
equations with two ideal gases, by letting P, T → ∞ such that 

                                 and                            remain constant.  
 
 
 
 
 
 
 

n  Same equations as those used for Rayleigh-Taylor studies (but no buoyancy) 

n  Boussinesq approximation (only retaining density terms directly related to 
gravity) would eliminate all density effects for mixing layer in this case 

 
     

 

1 1/ ( )P T Wρ = R 2 2/ ( )P T Wρ = R

Continuity 

Momentum 

Divergence condition 

0)( ,, =+ jjt uρρ
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no buoyant effects 
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DNS of Prototypical Variable Density Shear-Driven 
Mixing Layer 

n  DNS: fully resolve all dynamically relevant scales 
à important for obtaining reliable statistics to be 
used for models 

n  Requires numerical treatment that accurately 
represents variable density effects 

n  Very large computational problems are necessary 
•  Reynolds number (range of scales) 
•  Long wavelengths; Mode pairing (necessary physics of problem) 
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Simulation Code: CFDNS 

n  Code used: CFDNS (Livescu et al. LA-CC-09-100)  

n  Has been applied to Rayleigh-Taylor (variable-
density, buoyancy-driven) instability 

n  3-D simulations (up to 40962 x 4032) performed on 
Dawn, LLNL; Jaguar, ORNL; Cielo, LANL; and 
Sequoia, LLNL up to 250,000 compute cores 

 

A=0.75, grid size 40962 x4032 
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CFDNS: Numerical Methods	
  

n  For this problem, mixed FFTs - 6th order compact finite differences (slip walls 
represent boundaries of fluid layers, periodic in horizontal directions). 

n  Pressure projection method with a variable time stepping third order Adams-
Bashforth-Moulton for time advancement. 

n  Main difficulty: Density variations lead to a variable coefficient Poisson equation 
(Livescu and Ristorcelli, J. Fluid Mech. 2007).  

 

•  Closed form solution for the gradient component, q, of          , responsible for mass conservation 

•  Iterative solver for the curl component, Q, of          , related to the baroclinic production of vorticity 
(Livescu and Ristorcelli, J. Fluid Mech. 2007 and Chung and Pullin, J. Fluid Mech. 2010).   
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Application of CFDNS to Variable Density Shear-Driven 
Mixing Layer 

n  Preliminary results: 
n  h defined as width between points at which area-averaged streamwise velocity is at 10% and 

90% of total velocity difference ΔU (and similar for density difference between streams) 

n  Early time growth of velocity and density similar for all A; at later times, density growth is 
slower for large A while velocity growth remains similar between all A 

shear layer (velocity) growth 
rate (A=0.001) 

growth rate reaches steady value 
for self-similar growth regime 
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Application of CFDNS to Variable Density Shear-Driven 
Mixing Layer 

n  Atwood number has significant effect on volume-integrated dissipation 

n  Approach constant values in self-similar growth regime 
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Initial Density Profile 

n  No density perturbation; interface is flat sheet in 3D 

n  Density is a useful quantity for tracking mixing (by 
tracking the density interface) 
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heavy fluid 

light fluid 
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Density Contour 
Surfaces (late time) 

n  Contours of 
density at 
center of 
initial interface 
(ρ=ρ0) 

n  Evolved from 
initial flat 
sheet 
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A=0.001 

A=0.75 
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Density Contours (late time) 

n  High Atwood number: layer is asymmetric; mixing penetrates deeper into the 
lower-density side; structures are finer relative to higher-density side 
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Spanwise Vorticity Contours (late time) 

n  Growth of turbulent structures toward low-density fluid is similar to 
transport of density in high-Atwood number case 
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A=0.001 
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n  Spanwise vorticity (colored by streamwise velocity): 
structures are often tube-like 
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n  From below (lighter-fluid side): coloring reveals that there 
is a higher concentration of vortices near the free-stream 
velocity and fewer on the heavier-fluid side 
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Performance 
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Summary 

n  IC resources are effectively utilized by CFDNS 
to simulate variable density mixing layers 

n  Variable density effects in shear flows are 
important in many practical applications and 
also for testing multi-material turbulence 
models 

Slide 20 


